A perfect Morse function on the moduli space of flat connections

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A perfect Morse function on the moduli space of flat connections

Let X be a compact surface of genus g , and let Mg be the moduli space of flat SU(2) connections on X having holonomy −I around a single puncture p. Let a1, b1, a2, b2, . . . , ag, bg be the usual generators for π1(X\p), and define a real-valued function on Mg by assigning to a flat connection the trace of its holonomy around ag . This paper will give an elementary, direct proof that this funct...

متن کامل

Kirwan map and moduli space of flat connections

If K is a compact Lie group and g ≥ 2 an integer, the space K is endowed with the structure of a Hamiltonian space with a Lie group valued moment map Φ. Let β be in the centre of K. The reduction Φ(β)/K is homeomorphic to a moduli space of flat connections. When K is simply connected, a direct consequence of a recent paper of Bott, Tolman and Weitsman is to give a set of generators for the K-eq...

متن کامل

The Volume of the Moduli Space of Flat Connections on a Nonorientable 2-manifold

We compute the Riemannian volume of the moduli space of flat connections on a nonorientable 2-manifold, for a natural class of metrics. We also show that Witten’s volume formula for these moduli spaces may be derived using Haar measure, and we give a new proof of Witten’s volume formula for the moduli space of flat connections on a Riemann surface using Haar measure. ———————–

متن کامل

Parametrization of the moduli space of flat SL(2, R) connections on the torus

The moduli space of flat SL(2, R)-connections modulo gauge transformations on the torus may be described by ordered pairs of commuting SL(2, R) matrices modulo simultaneous conjugation by SL(2, R) matrices. Their spectral properties allow a classification of the equivalence classes, and a unique canonical form is given for each of these. In this way the moduli space becomes explicitly parametri...

متن کامل

Morse functions on the moduli space of G 2 structures

The moduli space of complex structures on a compact Riemann surface of genus 1 or ≥ 2 can be identified with the deformation space of Riemannian metrics of constant curvature 0 or −1, while the latter definition natually gives rise to the Weil-Peterson metric. Let M be a compact manifold of domension 7 with an integrable G2 structure, i.e., a differential 3-form φ that satisfies dφ = 0, and d ∗...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Topology

سال: 2000

ISSN: 0040-9383

DOI: 10.1016/s0040-9383(99)00032-4